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Abstract

Plane wave interference and space averages play a significant role in the derivation of some vibration
conductivity equations that are becoming more and more popular in modelling vibroacoustic problems.
Particularly, the thermal approach and the modified vibration conductivity equations are here considered
with the aim of establishing similarities and/or differences between them and stating relevant consequences.
It is shown by formal developments that the thermal equation is obtained under the assumption of
performing appropriate space averages, while the modified vibration conductivity equation does not need,
in some cases, this condition. It is discussed, however, that in practical applications the conditions of
validity of both approaches are quite similar.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Nowadays, the interest toward high-frequency problems is becoming more and more important
and demanding.
In the range of high frequencies, statistical energy analysis (SEA) is the recognized mother,

although it does not yet meet a general agreement for several reasons that are recognized
worldwide. In the last decade, a few alternative techniques have been introduced with the aim of
overcoming some limitations of SEA while providing solutions of higher informative content.
Among them are the following:

* the thermal analogy or heat conductivity or vibration conductivity method;
* the wave intensity analysis (WIA);
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* the envelope approach;
* the modified heat conductivity method.

Unlike SEA, all these methods share the possibility of providing a local response of the system
with a low input requirement while keeping, as in SEA, the advantage of a low computational
effort. The development of these techniques has reached different levels. WIA, which is in fact a
generalization of SEA, is a basic work and actually provides theoretical elements that are used in
other energetic techniques: recently it was applied successfully to predict the vibration levels in
assemblies of plate panels [1]. The envelope method that, unlike most of the other methods, is not
an energetic approach, provides a complex envelope displacement solution of the high-frequency
problem from which the physical solution can be recovered: however, so far this method has been
reliably applied to one-dimensional systems only, while the extension to more complex systems is
yet under development [2].
The thermal analogy is an approach that has met a high interest in the scientific community, in

that it is the one originally developed several years ago as an extension of the energy balance SEA
laws, with the advantage, with respect to SEA, of providing a ‘‘local’’ response along the system.
Actually, in recent years the thermal analogy showed some limitations and met some criticisms,
especially when applied to two-dimensional systems.
Recently some authors, by the use of a wave approach and the introduction of some simplified

assumptions, obtained the same heat thermal equation and another equation, here called for
reference the modified heat conductivity equation, that seems to provide more reliable results,
especially for two-dimensional structures. These approaches are mainly based on appropriate
space averages and the assumption of neglecting the interference among propagating waves.
Therefore, interference and space-averaging are critical subjects for these methods based on the
energy propagation: an insight into the contribution of the wave interaction to the energy
propagation mechanism is thus necessary to understand the limits of validity of the previous
methods and establish the main differences between them.

2. Background on vibration conductivity

In the mentioned methods, the thermal analogy and the modified heat conductivity method,
two main operations are used that have a relevant role on the whole analysis: the space average
and the assumption of neglecting wave interference. Their effects are only partially evaluated: they
are basic for the development of the methods, but a critical analysis is rather missing, although a
serious contribution related to these points is provided by Langley in Ref. [3].
In this section these methods are revisited under this point of view.
When speaking about the thermal analogy, we refer here explicitly to the approach proposed by

Ichchou et al. [4,5]. In fact, the thermal method has different derivations: it begun with a
differential formulation of the SEA laws proposed by a group of Soviet scientists [6,7], became
generally known with a paper by Nefske and Sung (PFFM) [8], provided interesting contributions
in different works by Bernhard et al. (e.g., Refs. [9–11]), and, finally, found a more precise
formulation based on the wave approach in some works by Jezequel et al. (e.g., Refs. [4,5,12]).
The concept of wave interference, often considered in SEA and other energetic approaches, is
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introduced in the wave approach proposed by these last authors, beyond the assumptions used to
derive the heat equation:

* linear, elastic systems;
* small hysteretic damping;
* steady state condition under harmonic excitation;
* near fields are neglected.

The new assumption used by Jezequel et al. claims that the interference among propagating
waves must be neglected, i.e., no correlation exists between plane waves. Under the above
assumptions, the time and space average energy parameters such as the active energy flow and
energy density can be obtained from a linear superposition of the partial energies associated to
each wave direction.
In Ref. [3] Langley presents a deep discussion on the validity of the thermal approach, showing

that the heat conductivity equation can be derived under the assumption of neglecting the
correlation among plane waves. However, he points out that the thermal analogy equation
leads, for cases of cylindrical symmetry, to an energy density decreasing as 1=

ffiffi
r

p
; versus a correct

energy solution that is represented by a dependency on 1=r; given by the square of the Bessel
function of zeroth order J0: This statement is also recalled by Le Bot in Refs. [13,14] when
presenting his integral model of modified heat conductivity. Therefore, it is concluded that the
thermal analogy is strictly not correct, although, under particular conditions, it can provide
acceptable results.
In Ref. [15] Carcaterra and Sestieri have derived exact time-average energy equations for the

free problem of one- and two-dimensional systems, while in Ref. [16] Carcaterra and Adamo have
discussed, both theoretically and experimentally, the role of wave interference in beams and
plates, using both time and space averages.
In the present paper the aim is to show: (i) the derivation of a general exact energy

equation, valid for systems governed by the Helmholtz equation; (ii) which of the terms of the
exact energy equations account for the interference effects; (iii) whether and how, by starting
from the exact energy equation, first presented in Ref. [15] for one-dimensional structures
and here extended to two-dimensional systems, the thermal equation can be determined by
introducing appropriate space average hypotheses and/or by neglecting the interference of
plane waves; (iv) whether the condition of space average and/or uncorrelated waves is a
necessary condition to yield the modified heat equation or it can be determined by less strict
assumptions. Finally, some comments about the implications of interference effects will be
provided.

2.1. Reference balance equations

2.1.1. Exact energy equation for second order systems governed by the Helmholtz equation
The energy equation determined in Ref. [15], valid for one-dimensional systems characterized

by second order equations or for the farfield components of flexural structures, can be extended to
two- and three-dimensional systems. To this aim, systems governed by the Helmholtz equation
(membranes, farfield components of flexural plates, acoustic fields) are considered in which a
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harmonic vibration wðxÞejo0t (wavenumber k0) is excited, i.e.,

r2wðxÞ þ k20wðxÞ ¼ 0; ð1Þ

w is a real vector displacement in the absence of damping.
Multiplying Eq. (1) by w; gives

w � r2w þ k20w � w ¼ 0: ð2Þ

Considering the time-average kinetic energy density, one can generally write

/TS ¼ kT w � w ¼ kT jwj
2; ð3Þ

where kT is a constant dependent on the system considered: e.g., for a membrane or a plate
kT ¼ m0o20=4; m0 being the mass per unit area. /S denotes the time average and k0 ¼ o0=c; c
being the phase velocity of the system considered. Since:

grad/TS ¼ 2kT grad w � w ð4Þ

it is obvious that

r2/TS ¼ 2kT w � r2w þ 2kT jgrad wj2:

Thus,

w � r2w ¼
1

2kT

r2/TS	 jgrad wj2: ð5Þ

By substituting Eqs. (3) and (5) into Eq. (2), one obtains

r2/TS	 2kT j grad wj2 þ 2k20/TS ¼ 0 ð6Þ

and expressing jgrad wj in terms of /TS; using Eq. (4), i.e.,

jgrad wj2 ¼
jgrad/TSj2

4kT/TS

one finally obtains the exact equation for the kinetic energy density, i.e.,

r2/TS	
jgrad/TSj2

2/TS
þ 2k20/TS ¼ 0: ð7Þ

Since in the literature the energy balance equations are often written in cylindrical co-ordinates
ðr; yÞ (two-dimensional case), from Eq. (7) one has, in this case

1

r

@

@r
r
@/TS
@r

� �
þ
1

r2
@2/TS

@y2
	

1

2/TS
@/TS
@r

� �2
þ
1

r

@/TS
@y

� �2( )
þ 2k20/TS ¼ 0: ð8Þ

If y is eliminated, i.e., a case of cylindrical symmetry is studied, Eq. (8) becomes

1

r

@

@r
r
@/TS
@r

� �
	

1

2/TS
@/TS
@r

� �2
þ2k20/TS ¼ 0: ð9Þ

It can be shown that, for a membrane where the vector w becomes simply a scalar w; Eq. (7) can
be expressed in terms of the kinetic and potential energy densities, obtaining a simpler form. In
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fact, for the membrane, the potential energy density is

/US ¼ 1
4

t jgrad wj2;

where t is the traction per unit length. Since c ¼
ffiffiffiffiffiffiffiffiffi
t=m0

p
is the wave speed in the membrane, one

can easily determine the relationship

/US ¼
jgrad/TSj2

4k20/TS
;

so that one can write, for the membrane

) r2/TSþ 2k20ð/TS	/USÞ ¼ 0: ð10Þ

(For flexural systems, Eq. (10) cannot be directly written in terms of potential energy only, but
rather a more complex expression is obtained [15].)

2.1.2. Established energy equations used in the literature
The vibration conductivity equation (and the modified heat equation) is usually written in terms

of the time and ‘‘space-averaged’’ total energy density %E as follows:

r2/ %ES ¼ 0 for undamped systems ð11Þ

or

r2/ %ES	
Zo
cg

� �2
/ %ES ¼ 0 for damped systems: ð12Þ

A discussion on the meaning and kind of space average will be presented in the following
sections.
In cylindrical co-ordinates, Eq. (11) becomes

1

r

@/ %ES
@r

þ
@2/ %ES
@r2

¼ 0 or
1

r

@

@r
r
@/ %ES
@r

� �
¼ 0: ð13Þ

Another equation that is considered in the literature and used successfully in a recent integral
formulation presented by Le Bot [14] is the undamped modified heat conductivity equation
determined in Refs. [4,5]. This is written in cylindrical co-ordinates as a first order differential
equation and is valid, in principle, for cylindrical symmetry. By using simple relationships, it can
be transformed into a second order differential equation that reads

2

r

@/ *ES
@r

þ
@2/ *ES
@r2

¼ 0 or
1

r

@

@r
r
@/ *ES
@r

� �
þ
1

r

@/ *ES
@r

¼ 0: ð14Þ

This equation is obviously non-thermal, as can be seen by comparing it with Eq. (13). The tilde
implies some kind of operation that is not stated explicitly here, but considered in the next
sections.
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3. Spherical mean of the energy equation

It will be shown in Section 3.2 how an exact general time and space-averaged energy equation
can be determined starting from Eq. (7). This is obtained by the concept of spherical mean, that is
a way to perform space moving averages of physical quantities: it permits one to perform simple
calculations on the space derivatives of an average function [17]. Moreover, the spherical mean
introduces the size (radius) r of the domain over which the average is performed that, according
to Ref. [16], plays a relevant role in attenuating the interference effects. This is specifically shown
in Section 3.2, where there is a discussion as to how the interference terms tend to vanish as the
size of the integration domain increases. It is worthwhile to point out that the results of the
spherical mean could be assimilated to those obtained by any other type of space average, with r
equivalent to the characteristic dimension of the space-average domain.
For two-dimensional problems, the moving spherical mean over the interior of a circle of radius

r is given by

#fðx; rÞ ¼
1

pr2

Z r

0

Z 2p

0

f ½xþ nðyÞm�m dm dy; ð15Þ

while the spherical mean over the boundary of the circle is

#f@ðx; rÞ ¼
1

2p

Z 2p

0

f ½xþ nðyÞr� dy: ð16Þ

For a better comprehension of the spherical average, see Fig. 1.
Using these definitions, one can simply obtain the following properties:

ðp1Þ cr2r2f ¼ r2 #f; ðp2Þ r2 #f ¼
2

r
@ #f@
@r

:

x

�

r 

y

�

�

�

x

Fig. 1. Spherical mean over the inner of the circle.
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These relationships have important implications. When a spherical mean is performed on
Eqs. (7) and property (p1) is used, one obtains

r2/ #TSþ Fint ¼ 0 ð17Þ

or, by using property (p2), one has

2

r
@/ #TS@

@r
þ Fint ¼ 0; ð18Þ

where Fint is an interference term (as is shown later) and given by

Fint ¼ 2k20/ #TS	
1

pr2

Z r

0

Z 2p

0

jgrad/TSj2

2/TS
m dm dy: ð19Þ

In the next section the meaning of the term Fint is shown and its dependency on the radius r of
the spherical mean.

3.1. Remarks on the expansion of the energy field in terms of plane waves

To better focus on the interference problem and have a more precise understanding of the
different balance equations proposed in the literature, a brief recall to the interference and
coincident energies is appropriate.
Considering the Helmholtz equation for two-dimensional systems:

r2w þ k20w ¼ 0; ð20Þ

one can stress that a plane propagating wave

wðrÞ ¼ Aejk�r ð21Þ

with r being the position vector, A the wave amplitude, j ¼
ffiffiffiffiffiffiffi
	1

p
; k ¼ k0n; and n ¼ ½cos y sin y�T;

is a solution of Eq. (20). For the linearity of the problem, a more general solution can be obtained
by superimposing plane waves of type (21) with different y’s [17], giving rise to a real displacement
w: Thus, in integral form

wðrÞ ¼
Z 2p

0

AðyÞejk0nðyÞr dy with Aðyþ pÞ ¼ AnðyÞ: ð22Þ

This represents the cylindrical standing wave solution of the homogeneous equation, but it is not
the solution for forced problems. Therefore, the energy developments based on Eq. (22) hold, for
forced problems, in regions of the structure where no loads are included.
The value of integral (22) for AðyÞ ¼ A ¼ const is proportional to the Bessel function J0; and

provides, particularly, the value 2pAJ0ðk0rÞ:
The time-average kinetic energy per unit area of the system can be obtained as follows:

/TS ¼ kT w2ðrÞ

¼ kT

Z 2p

0

Z 2p

0

Aðy1ÞAnðy2Þejk0nðy1Þre	jk
n

0
nðy2Þr dy1 dy2;

where kT ¼ m0o2=4; m0 being the mass per unit area.
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The energy related to interferent plane waves is represented by the integral contribution for
y1ay2; while the coincident energy is that associated to y1 ¼ y2:

3.2. Asymptotic analysis of the interference term Fint

The spherical mean over the boundary of the time-average kinetic energy determined in the
previous section is given by

/ #Tðx;rÞS@ ¼
1

2p

Z 2p

0

/TS½xþ rnðfÞ� df

i.e.,

/ #Tðx;rÞS@ ¼
1

2p

Z 2p

0

Z 2p

0

Z 2p

0

Aðy1ÞAnðy2Þejk0nðy1Þ½xþrnðfÞ�e	jk0nðy2Þ½xþrnðfÞ� dy1 dy2 df

or

/ #Tðx;rÞS@ ¼
1

2p

Z 2p

0

Z 2p

0

Z 2p

0

Aðy1ÞAnðy2Þejk0rfcosðy1	cÞ	cosðy2	cÞg

� ejk0rfcosðy1	fÞ	cosðy2	fÞg dy1 dy2 df; ð23Þ

where x ¼ r½cosc sin c�T; nðy1Þ ¼ ½cos y1 sin y1�T; nðy2Þ ¼ ½cos y2 sin y2�T; nðfÞ ¼ ½cos f sin f�T; k0
is a real wavenumber in the absence of damping, the case considered in the following
developments of this paper, or k0 ¼ ð1þ jZ=4Þk0 for a damped system. One can now integrate
such expression for k0r-N; using the asymptotic expansion up to the first order (Kelvin
method). The Kelvin method or stationary phase method states that the generalized Fourier
integral:

IðxÞ ¼
Z b

a

exjðtÞgðtÞ dt

can be approximated for large values of x by

IðxÞE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

xjj00ðt0Þj

s
gðt0Þejxjðt0Þþjðp=4Þ signðj

00ðt0ÞÞ;

where t0 is a stationary point of jðtÞ:
In the present case the phase function is given by

j ¼ cosðy1 	 fÞ 	 cosðy2 	 fÞ

so that the stationary points are given by

t0 ¼ f0 ¼
y1 þ y2
2

	
p
2

or y1 ¼ y2:

Note that the last solution cannot be considered for the evaluation of the interference energy.
In expression (23) of the kinetic energy both the coincident contribution (y1 ¼ y2) and the

interference contribution are present. First determine the interference term. By using the
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asymptotic expansion for k0r-N; i.e., for r=l0-N; one finds that

/ #Tintðx; rÞS@ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2prk0

s Z 2p

0

Z 2p

0

Aðy1ÞAnðy2Þffiffiffiffiffiffiffiffiffi
jf ð0Þj

p
� ejk0rfcosðy1	cÞ	cosðy2	cÞgejfk0rf ð0Þ	signðf ð0ÞÞp=4g dy1 dy2;

where f ð0Þ ¼ cosðy1=2	 y2=2þ p=2Þ 	 cosðy2=2	 y1=2þ p=2Þ: The integral, and thus
/ #Tintðx; rÞS@; presents a dependency on r given by ejk0r=

ffiffiffiffiffiffiffiffi
k0r

p
:

Because of the assumption of absence of damping, the coincident term is given by (y1 ¼ y2 ¼ y):

/ #TcoinS@ ¼
1

2p

Z 2p

0

Z 2p

0

jAðyÞj2 dy df ¼ const:

It is, evidently, / #TS@ ¼ / #TcoinS@ þ/ #TintS@; and it is trivial to prove that, for an undamped
system, one has r2/ #TcoinS@ ¼ 0; so that Eq. (18) can be rewritten as

2

r
@/ #TintS@

@r
þ Fint ¼ 0:

By considering the expression of / #TintS@; one has that its derivative shows an asymptotic
dependency on k0r given by

ejk0r

ðk0rÞ
1=2

so that

2

r
@/ #TintS@

@r
-0 as

ejk0r

ðk0rÞ
3=2

:

Therefore, for r-N; Fint decreases as 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0rÞ

3
q

and not monotonically (ejk0r). This shows
that, for large values of r; the interference terms in the energy equation, related to Fint; tend to
disappear, provided that the space averages are computed on rather large regions.
In Fig. 2 the case of a membrane is considered and the interference term averaged over the

membrane domain S; and normalized with respect to the total energy of the membrane, is shown
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Fig. 2. Normalized interference error versus r=l0; for different values of damping Z:
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for different values of the ratio r=l0 and for different values of damping. The normalized error is,
explicitly R

S
Fintðx;rÞ dSR

S
/ESðxÞ dS

;

where Fint is computed through Eq. (19). Although in the previous theoretical developments
damping was absent, it is introduced here because the heat conductivity equation is practically
meaningless if damping is zero, in that it provides a flat solution along the system. The membrane
is square 1:26 m� 1:26 m and excited by a harmonic point force at x ¼ 0:3 m; y ¼ 0:1 m
generating a characteristic wavelength response l0 ¼ 0:14 m; corresponding to a wavenumber
k0C45 m	1:
The considerations presented above on the trend of the interference terms with r are confirmed,

while one can also observe that the interference effect is higher when increasing the damping: this
would show that, when damping is larger, the direct field is dominant and, in these conditions, the
vibration conductivity is more difficultly achieved.
In Fig. 3 the physical kinetic energy of the considered membrane is presented for Z ¼ 0:02:

Figs. 4–6 show the energy obtained by performing a spherical mean, for different values of r=l0:
It is worthwhile to point out that these solutions do not correspond strictly to the thermal solution
because the cases presented are quite distant from the case of validity of the thermal equation
implying r=l0 ¼ N; which, in absence of damping, would have a flat trend along the whole
structure. Moreover, one can observe that, by increasing the ratio r=l0; the error decreases
(Fig. 2) but the result tends to become flatter (Figs. 4–6), somehow loosening the expected
information on the whole energy field.
Let us now establish some important differences related to the direct and reverberant fields. The

direct field is the one generated by a point source with AðyÞ ¼ A0 (constant). By substituting this
value in / #TintS@ and / #TcoinS@; one can observe that none of these terms is equal to zero. On the
contrary, referring to a diffuse field, one must think in statistical terms and estimate the expected
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Fig. 3. Physical kinetic energy of the membrane.
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value E½/ #TS@� of the spherical mean. For a reverberant field one can assume that [3]

EfAðy1ÞAnðy2Þg ¼ jAðy1Þj2dðy1 	 y2Þ

so that, by applying the average operator E to / #TS@; one can write

E½/ #TS@� ¼E½/ #TintS@ þ/ #TcoinS@�

¼E½/ #TintS@� þ E½/ #TcoinS@�:

Since E½/ #TintS@� ¼ 0 because y1ay2; one finally has

E½/ #TS@� ¼ E½/ #TcoinS@�

0
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Fig. 4. Spherical mean of the kinetic energy: r=l0 ¼ 0:5:
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Fig. 5. Spherical mean of the kinetic energy: r=l0 ¼ 1:
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so that

r2fE½/ #TcoinS@�g ¼ 0:

In conclusion one can stress that for a general field, the interference terms in the energy balance
equation are given by Fint; which tends to zero only asymptotically when performing spherical
means. However, in the particular case of reverberant fields, E½/ #TintS@� ¼ 0; so that the expected
value of the spherical mean of the interference term is necessarily equal to zero.

4. Validity conditions for the heat modified equation

Two different two-dimensional systems will be analyzed: the first one concerns the case of the
membrane, while the second one refers to a flexural plate.
It has already been mentioned that if the displacement field is represented as a superposition of

equal plane waves (AðyÞ ¼ A), then wðrÞ ¼ 2pAJ0ðk0rÞ: The associated time-average kinetic energy
density can be expressed as

/TS ¼ kT w2 ¼ kT A2

Z 2p

0

Z 2p

0

ejk0nðy1Þre	jk0nðy2Þr dy1 dy2

¼ kT4p2A2J20ðk0rÞ:

It can be shown that such energy verifies Eq. (9).
For the membrane, it was shown in Section 2.1.1. that the time-average potential energy density

is given by

/US ¼
jgrad/TSj2

4k20/TS
:
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Fig. 6. Spherical mean of the kinetic energy: r=l0 ¼ 3:
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By developing the gradient, one obtains

/US ¼
4p2A2kTJ

02
0

k20
:

The total time-average energy density is then

/ES ¼ /TSþ/US ¼ 4p2A2kT
J020
k20

þ J20

� 
:

It can be easily proved that such quantity does not satisfy the modified heat equation (14).
However, if it is assumed that rbl0; i.e., k0rb1; the Bessel function J0 can be simplified by using
an asymptotic expansion to yield

J0ðk0rÞC

ffiffiffiffiffiffiffiffiffi
2

pk0r

s
cos k0r 	

p
4

� �
so that

J00ðk0rÞC	
1

2

ffiffiffiffiffiffiffiffiffiffiffi
2

pk0r3

s
cos k0r 	

p
4

� �
	

ffiffiffiffiffiffiffiffiffi
2

pk0r

s
k0 sin k0r 	

p
4

� �
:

Because k0rb1 one can neglect the first term on the r.h.s. with respect to the second one, so that
one finally has

/ES ¼
8pA2kT

k0

1

r

i.e., the average total energy density is inversely proportional to r; in the hypothesis of large r:
It can now be immediately verified that this simplified expression satisfies the modified equation

(14). Therefore, one can finally conclude that, for the membrane, the modified heat equation holds
under the following conditions:

* time-average;
* large values of r with respect to l0;
* the plane wave interference is not neglected.

The case of the flexural plate is now considered. By assuming again that the displacement field is
still represented by a superposition of plane waves, the expression of the potential energy density
is completely different and given, in cylindrical co-ordinates, by

/US ¼
D

4

@2w

@r2
þ
1

r

@w

@r

� �2
	2ð1	 mÞ

@2w

@r2
1

r

@w

@r

( )
;
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where D ¼ Eh3=12ð1	 m2Þ; E and m being Young’s and the Poisson modulus, respectively, and h

the plate thickness.
Using as before the asymptotic expansion of the Bessel function and keeping only the dominant

terms in the expression of /US; one determines

/ES ¼/TSþ/US ¼
8pA2kT

k0

1

r
1þ

Dk40
4kT

� �
cos2 k0r 	

p
4

� �
¼
16pA2

r

kT

k0
cos2 k0r 	

p
4

� �
:

It is easily proved that this expression does not satisfy Eq. (14). Therefore, for its validity,
Eq. (14) requires another operation on the time-average energy density. One can observe that the
trend of the energy density behaves like 1=r so that a simple moving space-average (e.g., a
spherical mean) can be performed to eliminate the oscillating component, thus satisfying the
modified heat conductivity equation. Thus, beyond the conditions stated above, the validity of the
modified heat equation is reached, for flexural plates, under the further requirement of

* performing a moving space-average.

It can be stressed that, in the case of propagating waves instead of steady vibrations, the validity
of Eq. (14) is obtained under less restricted requirements for both membranes and plates.
In this case a different superposition technique [17,18] leads to the solution:

wðr; tÞ ¼ 2pARefH
ð2Þ
0 ðk0rÞejotg;

where H
ð2Þ
0 is the zeroth order Hankel function of the second kind. Its asymptotic value is given by

H
ð2Þ
0 ðk0rÞC

ffiffiffiffiffiffiffiffiffi
2

pk0r

s
e	jðk0r	p=4Þ:

When considering the instantaneous value of the kinetic and potential energies, one obtains
simply

T ¼
4pA2rho2

k0r
sin2 ot 	 k0r þ

p
4

� �
;

U ¼
4pA2Dk40

k0r
cos2 ot 	 k0r þ

p
4

� �
:

Therefore,

E ¼ T þ U ¼
16pA2kT

k0r
:

It satisfies Eq. (14), so that the modified heat equation is valid for propagating waves without
performing any time- or space-averages.
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5. Physical remarks on the interference contribution and conclusions

Based on the results presented so far and those exposed in Refs. [3,15,16], the following
conclusions can be drawn:
(i) For a general three-dimensional system, governed by the Navier equation, it is not possible

to determine an exact equation in terms of the energy density only. A general equation can be
determined as a function of /TS and the displacement field w; whose last dependency cannot be
eliminated [15].
(ii) For a two-dimensional structure governed by the Helmholtz equation, an energy equation

(7) can be obtained, and the interference terms identified.
(iii) In Section 3.2 it has been shown that, as r-N; Fint-0: therefore from Eq. (17), one has

that r2/ #TS ¼ 0; i.e., the energy equation tends to become thermal in absence of damping.
Therefore, the vibration conductivity equation can be obtained as a limit space-average process,
i.e., when the ratio r=l0-N and damping is negligible. Accordingly with the experimental results
given in Ref. [16] in presence of damping, for two-dimensional systems, even if r=l0b1; only the
coincidence energy becomes thermal, while the interference energy is not. In fact, when damping is
present, the wave field tends to be more direct and less reverberant so that the interference
terms would not disappear completely, as also shown in Section 3.2. Thus, the space average does
not eliminate in general the interference terms, but only smooths out their contribution.
However, when considering the special case of a reverberant field (implying low damping), the
expected value of the interference energy is zero, thus allowing one to accept the thermal equation
for the energy statistical mean without performing the limit space average. This point is also
somehow validated by considerations developed by Langley in Ref. [3] when discussing the
validity of the thermal analogy. He observes that, by performing a local average on the
displacement field expressed as a superposition of plane waves, the interference terms are expected
to go to zero either at high frequencies or when a reverberant field is considered. However,
if a direct field is analyzed, the space average is not sufficient to make these terms equal to
zero.
(iv) The modified equation provided by Le Bot, Ichchou and Jezequel for cylindrical symmetry

holds under particular conditions: for the membrane, it does not need space average, but time
average and the condition of being at a far distance from the source (rbl0). For the plate, the
further requirement of performing a moving space-average is needed. One can add that, when
considering cylindrical propagating waves (instead of steady vibrations), the heat-modified
equation does imply neither time nor space averages and it is verified by the instantaneous values
of the energy field. Finally, it is worthwhile to point out that in the heat modified equation the
average effect of plane wave interference is maintained. In fact the Bessel function, used in Section
4 to demonstrate the validity of the modified heat equation, can be considered as a superposition
of interfering plane waves, as seen in Section 3.1.
The integral approach used by Le Bot (not restricted to the case of cylindrical symmetry) leads

to more general applications but needs, for its validity, another assumption:

* the interference of plane waves derived from the primary and secondary sources (reflected
waves) from the structure boundaries must be neglected.

This statement is possible when, at high frequencies [13],
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* the excitation forces are uncorrelated;
* the modal behaviour of the system is not relevant: this condition holds especially when the
modal overlap is high.

However, these last two conditions are those under which the thermal approach can be
determined. Therefore, it could be concluded that there are no relevant differences between the
validity conditions of these two methods, although in practice their developments are quite
different. Maybe, an important difference can be stressed. In fact a high modal overlap implies
any of the following conditions:

* the modes are rather close;
* the damping is rather high;
* high frequencies.

On the contrary vibration conductivity does not imply high damping, because the reverberant
condition is more easily verified, thus eliminating the effect of the direct field when damping is
low. Therefore, the thermal analogy would hold at high frequencies when the damping is low,
while the modified heat equation would be valid, at high frequencies, for high damping. In any
case, a high modal overlap and high frequencies are conditions under which one can be confident
on SEA: it would be apparent that the thermal analogy and the modified heat equation are
reliable under the conditions of the SEA validity.
A final comment concerns the comparisons of the three energy equations investigated in the

case of cylindrical symmetry: the exact equation (9), the thermal equation (13) and the modified
vibration conductivity equation (14). They express an energy balance referred to different space
regions. This difference can be interpreted in terms of the ratio r=l0: Eq. (9) is an exact local
(point) balance thus implying r=l0-0: On the other hand the thermal equation is an energy
balance obtained by averaging on a very large region, as implied by the condition r=l0-N: The
modified heat equation can be regarded as an intermediate case in which the average is performed
over a finite region. These statements have a physical counterpart in terms of waves’ interference.
In the exact equation the interference energy terms are clearly present. In the heat-modified
equation, being the average performed over a finite region, the interference terms are still present
but become more simple, as apparent by comparing Eqs. (9) and (14). Finally, when the region
over which the average is performed tends to infinity the interference terms definitely disappear
and one has the thermal equation.
While the forms of both the exact and thermal equations can be determined independent of any

special assumption of cylindrical symmetry (see Eqs. (7) and (11)), the heat-modified equation is
obtained only in this particular case. However, the integral formulation given in by Le Bot in Ref.
[14] is a generalization of the heat-modified equation, valid for any considered wave pattern,
although in this case the interference of primary and secondary sources must be neglected to
obtain his integral equations.
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